RaSE: Random Subspace Ensemble

Yang Feng

New York University

Oct 12 @ TEDS SEMINAR

Collaborator

Ye Tian

Zoe Zhu

Outline

1 Introduction

- 2 RaSE classification algorithm
- 3 RaSE screening
- 4 Super RaSE
- 5 Numerical experiments

Outline

1 Introduction

- 2 RaSE classification algorithm
- 3 RaSE screening
- Super RaSE
- 5 Numerical experiments

 \circ Features $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^p$

▷ e.g., features of a credit card transaction.

- $\circ \ \ \mathsf{Features} \ \mathbf{x} \in \mathcal{X} \subset \mathbb{R}^p$
 - ▷ e.g., features of a credit card transaction.
- \circ Class label $y \in \{0,1\}$
 - \triangleright e.g., fraud status (YES or NO) of a transaction.

- \circ Features $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^p$
 - ▷ e.g., features of a credit card transaction.
- Class label $y \in \{0, 1\}$
 - \triangleright e.g., fraud status (YES or NO) of a transaction.
- A classifier is a binary function $C : \mathcal{X} \to \{0, 1\}.$

- \circ Features $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^p$
 - ▷ e.g., features of a credit card transaction.
- $\circ \text{ Class label } y \in \{0,1\}$
 - \triangleright e.g., fraud status (YES or NO) of a transaction.
- A classifier is a binary function $C: \mathcal{X} \to \{0, 1\}.$
- Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$

- \circ Features $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^p$
 - ▷ e.g., features of a credit card transaction.
- $\circ \text{ Class label } y \in \{0,1\}$
 - \triangleright e.g., fraud status (YES or NO) of a transaction.
- A classifier is a binary function $C: \mathcal{X} \to \{0, 1\}.$
- Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$
- The risk of classification is a function of C: $R(C) = \mathsf{E}[\mathbbm{1}(C(\mathbf{x}) \neq y)] = \mathsf{P}(C(\mathbf{x}) \neq y)).$

Ensemble classification

Suppose we have trained B_1 classifiers $\{C_j\}_{j=1}^{B_1}$ based on the training data, then they can be aggregated in a simple average to get the final decision function

$$C^{En}(\mathbf{x}) = \mathbb{1}\left(\frac{1}{B_1}\sum_{j=1}^{B_1}\mathbb{1}(C_j(\mathbf{x}) = 1) > \alpha\right)$$

Ensemble classification

Suppose we have trained B_1 classifiers $\{C_j\}_{j=1}^{B_1}$ based on the training data, then they can be aggregated in a simple average to get the final decision function

$$C^{En}(\mathbf{x}) = \mathbb{1}\left(\frac{1}{B_1}\sum_{j=1}^{B_1}\mathbb{1}(C_j(\mathbf{x}) = 1) > \alpha\right)$$

 Previous work on ensemble classification: Breiman (1996): Bagging

Breiman (2001): Random forest Freund and Schapire (1995): Boosting Ho (1998): Random subspace method Ahn et al. (2007): Random partition ensemble classification Blaser and Fryzlewicz (2016): Random rotation Cannings and Samworth (2017): Random projection

Random subspace method (Ho, 1998)

• It's a model-free framework. Suppose we generate B_1 random subspaces $\{S_j\}_{j=1}^{B_1}$ and construct *j*-th weak learner $C_n^{S_j-\mathcal{T}}$ of type \mathcal{T} , then the ensemble classifier is

$$C^{RSM}(\mathbf{x}) = \mathbb{1}\left(\frac{1}{B_1} \sum_{j=1}^{B_1} \mathbb{1}(C_n^{S_j - \mathcal{T}}(\mathbf{x}) = 1) > \alpha\right)$$

Random subspace method (Ho, 1998)

• It's a model-free framework. Suppose we generate B_1 random subspaces $\{S_j\}_{j=1}^{B_1}$ and construct *j*-th weak learner $C_n^{S_j-\mathcal{T}}$ of type \mathcal{T} , then the ensemble classifier is

$$C^{RSM}(\mathbf{x}) = \mathbb{1}\left(\frac{1}{B_1} \sum_{j=1}^{B_1} \mathbb{1}(C_n^{S_j - \mathcal{T}}(\mathbf{x}) = 1) > \alpha\right)$$

In many problems, only p^{\ast} of p features are signals, where $p^{\ast} \ll p.$ Consider the mixture model

$$\mathbf{x} \sim \pi_0 f^{(0)} + \pi_1 f^{(1)},$$

where $f^{(0)}, f^{(1)}$ are the conditional densities, inducing measures $\mathsf{P}^{(0)}, \mathsf{P}^{(1)}$.

In many problems, only p^{\ast} of p features are signals, where $p^{\ast} \ll p.$ Consider the mixture model

$$\mathbf{x} \sim \pi_0 f^{(0)} + \pi_1 f^{(1)},$$

where $f^{(0)}, f^{(1)}$ are the conditional densities, inducing measures $\mathsf{P}^{(0)}, \mathsf{P}^{(1)}$.

• Discriminative set S: $y|x_S$ is independent with x_{S^c} . (Zhang and Wang, 2011; Kohavi et al., 1997; Mai et al., 2012)

In many problems, only p^{\ast} of p features are signals, where $p^{\ast} \ll p.$ Consider the mixture model

$$\mathbf{x} \sim \pi_0 f^{(0)} + \pi_1 f^{(1)},$$

where $f^{(0)}, f^{(1)}$ are the conditional densities, inducing measures $\mathsf{P}^{(0)}, \mathsf{P}^{(1)}$.

- Discriminative set S: $y|x_S$ is independent with x_{S^c} . (Zhang and Wang, 2011; Kohavi et al., 1997; Mai et al., 2012)
- $\circ\,$ An equivalent definition: There exists a function $h:\mathbb{R}^{|S|}\to [0,+\infty]$ such that

$$rac{f^{(1)}(m{x})}{f^{(0)}(m{x})} = h(m{x}_S)$$

almost surely with respect to $P^X = \pi_0 P^{(0)} + \pi_1 P^{(1)}$. (Tian and Feng, 2021)

In many problems, only p^{\ast} of p features are signals, where $p^{\ast} \ll p.$ Consider the mixture model

$$\mathbf{x} \sim \pi_0 f^{(0)} + \pi_1 f^{(1)},$$

where $f^{(0)}, f^{(1)}$ are the conditional densities, inducing measures $\mathsf{P}^{(0)}, \mathsf{P}^{(1)}$.

- Discriminative set S: $y|x_S$ is independent with x_{S^c} . (Zhang and Wang, 2011; Kohavi et al., 1997; Mai et al., 2012)
- $\circ\,$ An equivalent definition: There exists a function $h:\mathbb{R}^{|S|}\to [0,+\infty]$ such that

$$rac{f^{(1)}(m{x})}{f^{(0)}(m{x})} = h(m{x}_S)$$

almost surely with respect to $P^X = \pi_0 P^{(0)} + \pi_1 P^{(1)}$. (Tian and Feng, 2021)

 \circ Minimal discriminative set S^* : the discriminative set with minimal cardinality. (Tian and Feng, 2021)

Example (Discriminant analysis): $\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$

Example (Discriminant analysis): $\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$ \circ LDA: $\boldsymbol{\Sigma}^{(0)} = \boldsymbol{\Sigma}^{(1)} = \boldsymbol{\Sigma}$. We have

$$\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = (\boldsymbol{\mu}^{(0)} - \boldsymbol{\mu}^{(1)})^T \Sigma^{-1} \boldsymbol{x} + C.$$

where C is a constant unrelated to $\pmb{x}.$ We have $S^*=\{j:(\Sigma^{-1}(\pmb{\mu}^{(1)}-\pmb{\mu}^{(0)}))_j\neq 0\}.$

Example (Discriminant analysis): $\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$ \circ LDA: $\boldsymbol{\Sigma}^{(0)} = \boldsymbol{\Sigma}^{(1)} = \boldsymbol{\Sigma}$. We have

$$\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = (\boldsymbol{\mu}^{(0)} - \boldsymbol{\mu}^{(1)})^T \Sigma^{-1} \boldsymbol{x} + C.$$

where *C* is a constant unrelated to *x*. We have $S^* = \{j : (\Sigma^{-1}(\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(0)}))_j \neq 0\}.$ • **QDA**: $\Sigma^{(0)}$ and $\Sigma^{(1)}$ can be different. Since

$$\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = \frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{\Omega}\boldsymbol{x} + \boldsymbol{\delta}^{T}\boldsymbol{x} + C.$$

where C is a constant unrelated to \boldsymbol{x} , and $\Omega = (\Sigma^{(1)})^{-1} - (\Sigma^{(0)})^{-1}$, $\boldsymbol{\delta} = (\Sigma^{(0)})^{-1}\boldsymbol{\mu}^{(0)} - (\Sigma^{(1)})^{-1}\boldsymbol{\mu}^{(1)}$, we have $S^* = \{j : \Omega_{ij} \neq 0, \exists i\}$ $\cup \{j : \boldsymbol{\delta}_j \neq 0\}.$

Classical aggregation framework

Let's recall the classical aggregation framework.

• For high-dimensional sparse problems, only a few of S_i can cover S^* .

Another way for aggregation

Another way for aggregation

• This scheme was also used by Cannings and Samworth (2017) for random projection ensemble.

Another way for aggregation

- This scheme was also used by Cannings and Samworth (2017) for random projection ensemble.
- The random subspace method works better for sparse classification problems.

Outline

Introduction

- 2 RaSE classification algorithm
 - 3 RaSE screening
 - Super RaSE
 - 5 Numerical experiments

Algorithm 1: Random subspace ensemble classification (RaSE)

Construct the ensemble decision function $\nu_n(\boldsymbol{x}) = \frac{1}{B_1} \sum_{j=1}^{B_1} C_n^{S_{j*}-T}(\boldsymbol{x})$ Set the threshold $\hat{\alpha}$ according to (1) Output $C_n^{RaSE}(\boldsymbol{x}) = \mathbb{1}(\nu_n(\boldsymbol{x}) > \hat{\alpha})$ and $\boldsymbol{\eta} = (\eta_1, \dots, \eta_p)^T$, where $\eta_l = B_1^{-1} \sum_{j=1}^{B_1} \mathbb{1}(l \in S_{j*}), l = 1, \dots, p.$

 $\circ\,$ Distribution ${\cal D}$ for random subspaces: hierarchical uniform distribution

- \triangleright Set D
- \triangleright Draw d_{jk} i.i.d. from Uniform({1, 2, ..., D})
- $\triangleright \text{ Draw } S_{jk} \text{ from Uniform}(\{S \subseteq \{1, \dots, p\} : |S| = d_{jk}\})$

 $\circ~\mbox{Distribution}~\mathcal{D}$ for random subspaces: hierarchical uniform distribution

- \triangleright Set D
- \triangleright Draw d_{jk} i.i.d. from Uniform($\{1, 2, \dots, D\}$)
- $\triangleright \text{ Draw } S_{jk} \text{ from Uniform}(\{S \subseteq \{1, \dots, p\} : |S| = d_{jk}\})$
- Threshold

$$\hat{\alpha} = \mathop{\rm argmin}_{\alpha \in (0,1)} \left[\text{training error of } C_n^{RaSE} \text{ based on } \alpha \right].$$

 $\circ\,$ Distribution ${\cal D}$ for random subspaces: hierarchical uniform distribution

- \triangleright Set D
- ▷ Draw d_{jk} i.i.d. from Uniform($\{1, 2, ..., D\}$)
- $\triangleright \text{ Draw } S_{jk} \text{ from Uniform}(\{S \subseteq \{1, \dots, p\} : |S| = d_{jk}\})$
- Threshold

$$\hat{\alpha} = \mathop{\rm argmin}_{\alpha \in (0,1)} \left[\text{training error of } C_n^{RaSE} \text{ based on } \alpha \right].$$

 $\circ\,$ The selected proportion of each feature η can be used to rank significance of features.

 $\circ\,$ Distribution ${\cal D}$ for random subspaces: hierarchical uniform distribution

- \triangleright Set D
- ▷ Draw d_{jk} i.i.d. from Uniform($\{1, 2, ..., D\}$)
- \triangleright Draw S_{jk} from Uniform ({ $S \subseteq \{1, \ldots, p\} : |S| = d_{jk}$ })
- Threshold

$$\hat{\alpha} = \mathop{\rm argmin}_{\alpha \in (0,1)} \left[\text{training error of } C_n^{RaSE} \text{ based on } \alpha \right].$$

- $\circ\,$ The selected proportion of each feature η can be used to rank significance of features.
- Possible base classifier \mathcal{T} :
 - ▷ Parametric: LDA, QDA, SVM, logistic regression, ...
 - ▷ Non-parametric: *k*NN, trees, random forest, neural network, ...

 $\circ\,$ Distribution ${\cal D}$ for random subspaces: hierarchical uniform distribution

- \triangleright Set D
- ▷ Draw d_{jk} i.i.d. from Uniform($\{1, 2, ..., D\}$)
- \triangleright Draw S_{jk} from Uniform({ $S \subseteq \{1, \ldots, p\} : |S| = d_{jk}$ })
- Threshold

$$\hat{\alpha} = \mathop{\rm argmin}_{\alpha \in (0,1)} \left[\text{training error of } C_n^{RaSE} \text{ based on } \alpha \right].$$

- $\circ\,$ The selected proportion of each feature η can be used to rank significance of features.
- Possible base classifier \mathcal{T} :
 - ▷ Parametric: LDA, QDA, SVM, logistic regression, ...
 - ▷ Non-parametric: kNN, trees, random forest, neural network, ...
- \circ Criterion \mathcal{C} : multiple choices (to discuss later).

• Restrictive multinomial distribution $Rmultin(p, d, \eta)$: $J = (J_1, ..., J_p)^T, \sum_l J_l = d, J_l \in \{0, 1\}$ and each J_l has marginal probability η .

- Restrictive multinomial distribution $Rmultin(p, d, \eta)$: $J = (J_1, ..., J_p)^T, \sum_l J_l = d, J_l \in \{0, 1\}$ and each J_l has marginal probability η .
- How this helps to generate each subspace
 - \triangleright Draw d from Uniform({1, 2, ..., D}).
 - ▷ Draw $J = (J_1, ..., J_p)^T \sim Rmultin(p, d, \eta)$, where $J_l = \mathbb{1}(l \in S)$, l = 1, ..., p.
 - $\triangleright \ J \longleftrightarrow \mathsf{a} \text{ subspace } S \text{ of size } d$

- Restrictive multinomial distribution $Rmultin(p, d, \eta)$: $J = (J_1, ..., J_p)^T, \sum_l J_l = d, J_l \in \{0, 1\}$ and each J_l has marginal probability η .
- How this helps to generate each subspace
 - \triangleright Draw d from Uniform({1, 2, ..., D}).
 - ▷ Draw $J = (J_1, ..., J_p)^T \sim Rmultin(p, d, \eta)$, where $J_l = \mathbb{1}(l \in S)$, l = 1, ..., p.
 - $\triangleright \ J \longleftrightarrow \mathsf{a} \text{ subspace } S \text{ of size } d$
- $\,\circ\,$ How about updating subspace distribution ${\cal D}$ using $\eta?$

Algorithm 2: Iterative $RaSE(RaSE_T)$

Input: training data $\{(x_i, y_i)\}_{i=1}^n$, new data x, initial subspace distribution $\mathcal{D}^{(0)}$, criterion C, integers B_1 and B_2 , the type of base classifier \mathcal{T} , the number of iterations T

Output: the predicted label $C_n^{RaSE}(\mathbf{x})$, the proportion of each feature $\eta^{(T)}$ for $t \leftarrow 0$ to T do // The iteration step

Construct the ensemble decision function $\nu_n(\boldsymbol{x}) = \frac{1}{B_1} \sum_{j=1}^{B_1} C_n^{S_{j*}-\mathcal{T}}(\boldsymbol{x})$ Set the threshold $\hat{\alpha}$ according to (1) Output the predicted label $C_n^{RaSE}(\boldsymbol{x}) = \mathbb{1}(\nu_n(\boldsymbol{x}) > \hat{\alpha})$ and $\boldsymbol{\eta}^{(T)}$

Fishing Signals Using Iterative RaSE

Multiple choices for criterion $\ensuremath{\mathcal{C}}$

Other choices:

- Minimizing training error (Cannings and Samworth, 2017; Bryll et al., 2003)
- Minimizing validation or cross-validation error (Cannings and Samworth, 2017; Bryll et al., 2003)
- Minimizing other information criterion, like AIC, BIC and their generalizations (Akaike, 1973; Schwarz et al., 1978; Chen and Chen, 2008, 2012; Fan and Tang, 2013)

Misclassification rate of RaSE classifier

General misclassification rate (Tian and Feng (2021))

For RaSE classifier with threshold α and any criterion to choose optimal subspaces, it holds that

$$\mathbb{E}\{\mathbf{E}[R(C_n^{RaSE}) - R(C_{Bayes})]\} \le \frac{\mathbb{E}\sup_{\substack{S:S \supseteq S^* \\ |S| \le D}} [R(C_n^S) - R(C_{Bayes})] + \mathbb{P}(S_{1*} \not\supseteq S^*)}{\min(\alpha, 1 - \alpha)}.$$

 $\circ \mathbb{E} \sup_{\substack{S:S \supseteq S^* \\ |S| \leq D}} [R(C_n^S) - R(C_{Bayes})]$: the discrepancy between finite sample

classifier and the oracle. It is shown to converge to zero when \mathcal{T} is LDA or QDA under some conditions. (Efron, 1975; Li and Shao, 2015; Hall et al., 2008; Samworth et al., 2012)

∘ $P(S_{1*} \not\supseteq S^*)$: the accuracy of subspace selection, which converges to zero.

Outline

Introduction

2 RaSE classification algorithm

3 RaSE screening

4 Super RaSE

Iterative RaSE Screening

Algorithm 3: Iterative RaSE screening (RaSE_T)

Input: training data $\{(x_i, y_i)\}_{i=1}^n$, initial subspace distribution $\mathcal{D}^{[0]}$, criterion function \mathcal{C}_n , integers B_1 and B_2 , the number of iterations T, positive constant C_0 , number of variables N to select **Output:** the selected proportion of each feature $\hat{n}^{[T]}$, the selected subset \hat{S} for $t \leftarrow 0$ to T do Independently generate random subspaces $S_{b_1b_2}^{[t]} \sim \mathcal{D}^{[t]}, 1 \leq b_1 \leq B_1, 1 \leq b_2 \leq B_2$ for $b_1 \leftarrow 1$ to B_1 do Select the optimal subspace $S_{b_1*}^{[t]} = S_{b_1b_*}^{[t]}$, where $b_2^* = \arg\min_{1 \le t \le D} C_n(S_{b_1b_2}^{[t]})$ end Update $\hat{\eta}^{[t]}_{i}$ where $\hat{\eta}^{[t]}_{i} = B_{1}^{-1} \sum_{b_{1}=1}^{B_{1}} \mathbb{1}(j \in S_{b_{1}*}^{[t]}), j = 1, \dots, p$ Update $\mathcal{D}^{[t+1]} \leftarrow$ hierarchical restrictive multinomial distribution $\mathcal{R}(\mathcal{U}_0, p, \tilde{\eta}^{[t]})$, where $\tilde{\eta}_{i}^{[t]} \propto [\hat{\eta}_{i}^{[t]} \mathbb{1}(\hat{\eta}_{i}^{[t]} > C_{0}/\log p) + \frac{C_{0}}{n} \mathbb{1}(\hat{\eta}_{i}^{[t]} \le C_{0}/\log p)]$ and $\sum_{i=1}^{p} \tilde{\eta}_{i}^{[t]} = 1$ end

Output the selected proportion of each feature $\hat{\eta}^{[T]}$ Output $\hat{S} = \{1 \leq j \leq p : \hat{\eta}_j^{[T]} \text{ is among the } N \text{ largest of all} \}$

Sure Screening Property

Sure screening property

For any $\alpha > 1$, let $\hat{S}_{\alpha} = \{1 \leq j \leq p : \hat{\eta}_j \text{ is among the } [\alpha D/c_{2n}] \text{ largest of all} \}$. Under certain conditions, when $B_1 \gg \log p^*$ and $n \to \infty$, we have

•
$$\mathbb{P}(S^* \subseteq \hat{S}_{\alpha}) \ge 1 - p^* \exp\left\{-2B_1 c_{2n}^2 \left(1 - \frac{1}{\alpha}\right)^2\right\} \to 1;$$

 $\circ~$ The selected model size $|\hat{S}_{\alpha}| \lesssim D.$

Outline

Introduction

- 2 RaSE classification algorithm
- 3 RaSE screening
- 4 Super RaSE
 - 5 Numerical experiments

Motivation

- RaSE algorithm needs to pair with a base classifier and it could fail to work well if the base classifier is not properly set.
- We relax this requirement by replacing a single base classifier with *a* collection of base classifiers. For example, $T = \{LDA, QDA, KNN\}$.

We call the new ensemble classification framework the *Super Random Subspace Ensemble (Super RaSE)*.

Algorithm 4: Super Random Subspace Ensemble classification (SRaSE)

Input: training data $\{(x_i, y_i)\}_{i=1}^n$, new data x, subspace distribution \mathcal{D} , integers B_1 and B_2 , the candidate base classifier set \mathcal{T} , base classifier distribution \mathbb{D}

Output: predicted label $C_n^{RaSE}(\boldsymbol{x})$, the selected proportion of each base classifier $\boldsymbol{\zeta}$, and for the base classifier $T_i \in \mathcal{T}$ where $i \in \{1, \cdots, M\}$, the selected proportion of each feature $\boldsymbol{\eta}_i$

Independently generate base classifiers $T_{jk} \sim \mathbb{D}, 1 \leq j \leq B_1, 1 \leq k \leq B_2$ Independently generate random subspaces $S_{jk} \sim \mathcal{D}, 1 \leq j \leq B_1, 1 \leq k \leq B_2$ for $j \leftarrow 1$ to B_1 do

Select the optimal subspace and base classifier pair (T_{j*}, S_{j*}) from $\{(T_{jk}, S_{jk})\}_{k=1}^{B_2}$ using 5-fold cross-validation.

end

Construct the ensemble decision function $\nu_n(x) = B_1^{-1} \sum_{j=1}^{B_1} C_n^{T_{j*}-S_{j*}}(x)$ Set the threshold $\hat{\alpha}$ according to (1) Compute the selected proportion of each method $\boldsymbol{\zeta} = (\zeta_1, \cdots, \zeta_M)^T$, where $\zeta_i = B_1^{-1} \sum_{j=1}^{B_1} \mathbb{1}(i \in T_{j*})$ For each method $T_i, i = 1, \cdots, M$, compute the selected proportion of each feature $\boldsymbol{\eta}_i = (\eta_{i1}, \cdots, \eta_{ip})^T$, where $\eta_{il} = (\zeta_i B_1)^{-1} \sum_{j=1}^{B_1} \mathbb{1}(i \in T_{j*}) \mathbb{1}(l \in S_{j*}), l = 1, \cdots, p$ Output the predicted label $C_n^{RaSE}(\mathbf{x}) = \mathbb{1}(\nu_n(x) > \hat{\alpha})$, the selected proportion of each method $\boldsymbol{\zeta} = (\zeta_1, \cdots, \zeta_M)^T$, and the selected proportion of each feature for each method $\boldsymbol{\eta}_i = (\eta_{i1}, \cdots, \eta_{ip})^T$

Iterative Super RaSE

Main Idea: update the base classification distribution, as well as the subspace distribution for each base classifer.

- Set $\mathbb{D}^{(t+1)}$ to be a discrete distribution over the candidate base classifier set \mathcal{T} , where for each base classifier $T_i \in \mathcal{T}$, $P(T_i) = \zeta_i^{(t)}$, where $\zeta_i^{(t)} = B_1^{-1} \sum_{j=1}^{B_1} \mathbb{1}(i \in T_{j*}^{(t)})$
- For each method $T_i, i = 1, \cdots, M$, compute $\eta_{il}^{(t)} = (\zeta_i^{(t)} B_1)^{-1} \sum_{j=1}^{B_1} \mathbb{1}(i \in T_{j*}^{(t)}) \mathbb{1}(l \in S_{j*}^{(t)}), l = 1, \cdots, p$
- Set $\mathcal{D}^{(t+1)}$ to be a restrictive multinomial distribution with parameter $(p, d, \tilde{\boldsymbol{\eta}}_i^{(t)})$, where $\tilde{\eta}_{il}^{(t)} = \eta_{il}^{(t)} \mathbb{1}(\eta_{il}^{(t)} > C_0/\log p) + \frac{C_0}{p} \mathbb{1}(\eta_{il}^{(t)} \le C_0/\log p)$ and d is sampled from the uniform distribution over $\{1, \cdots, D\}$

Outline

Introduction

- 2 RaSE classification algorithm
- 3 RaSE screening
- Output Super RaSE
- 5 Numerical experiments

Recall:
$$\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$$

 $\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = \frac{1}{2}\boldsymbol{x}^T \Omega \boldsymbol{x} + \boldsymbol{\delta}^T \boldsymbol{x} + C,$

where C is a constant unrelated to x, and $\Omega = (\Sigma^{(1)})^{-1} - (\Sigma^{(0)})^{-1}$, $\delta = (\Sigma^{(0)})^{-1} \mu^{(0)} - (\Sigma^{(1)})^{-1} \mu^{(1)}$.

Recall:
$$\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$$

 $\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = \frac{1}{2}\boldsymbol{x}^T \Omega \boldsymbol{x} + \boldsymbol{\delta}^T \boldsymbol{x} + C,$

where C is a constant unrelated to x, and $\Omega = (\Sigma^{(1)})^{-1} - (\Sigma^{(0)})^{-1}$, $\delta = (\Sigma^{(0)})^{-1} \mu^{(0)} - (\Sigma^{(1)})^{-1} \mu^{(1)}$.

• Setting (Fan et al., 2015): $\Omega^{(0)} = (\Sigma^{(0)})^{-1}$ is a $p \times p$ band matrix with $(\Omega^{(0)})_{ii} = 1$ and $(\Omega^{(0)})_{ik} = 0.3$ for |i - k| = 1. $\pi_0 = \pi_1 = 0.5$. Ω is a 200×200 sparse symmetric matrix with $\Omega_{10,10} = -0.3758$, $\Omega_{10,30} = 0.0616, \Omega_{10,50} = 0.2037, \Omega_{30,30} = -0.5482, \Omega_{30,50} = 0.0286, \Omega_{50,50} = -0.4614$. $\boldsymbol{\delta} = (0.6, 0.8, \mathbf{0}_{198})^T$.

Recall:
$$\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$$

 $\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = \frac{1}{2}\boldsymbol{x}^T \Omega \boldsymbol{x} + \boldsymbol{\delta}^T \boldsymbol{x} + C,$

where C is a constant unrelated to x, and $\Omega = (\Sigma^{(1)})^{-1} - (\Sigma^{(0)})^{-1}$, $\delta = (\Sigma^{(0)})^{-1} \mu^{(0)} - (\Sigma^{(1)})^{-1} \mu^{(1)}$.

- Setting (Fan et al., 2015): $\Omega^{(0)} = (\Sigma^{(0)})^{-1}$ is a $p \times p$ band matrix with $(\Omega^{(0)})_{ii} = 1$ and $(\Omega^{(0)})_{ik} = 0.3$ for |i k| = 1. $\pi_0 = \pi_1 = 0.5$. Ω is a 200 × 200 sparse symmetric matrix with $\Omega_{10,10} = -0.3758$, $\Omega_{10,30} = 0.0616, \Omega_{10,50} = 0.2037, \Omega_{30,30} = -0.5482, \Omega_{30,50} = 0.0286, \Omega_{50,50} = -0.4614$. $\boldsymbol{\delta} = (0.6, 0.8, \mathbf{0}_{198})^T$.
- Minimal discriminative set $S^* = \{j : \delta_j \neq 0\} \cup \{j : \Omega_{ij} \neq 0, \exists i\} = \{1, 2, 10, 30, 50\}.$

Recall:
$$\boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1.$$

 $\log\left(\frac{f^{(0)}(\boldsymbol{x})}{f^{(1)}(\boldsymbol{x})}\right) = \frac{1}{2}\boldsymbol{x}^T \Omega \boldsymbol{x} + \boldsymbol{\delta}^T \boldsymbol{x} + C,$

where C is a constant unrelated to x, and $\Omega = (\Sigma^{(1)})^{-1} - (\Sigma^{(0)})^{-1}$, $\delta = (\Sigma^{(0)})^{-1} \mu^{(0)} - (\Sigma^{(1)})^{-1} \mu^{(1)}$.

- Setting (Fan et al., 2015): $\Omega^{(0)} = (\Sigma^{(0)})^{-1}$ is a $p \times p$ band matrix with $(\Omega^{(0)})_{ii} = 1$ and $(\Omega^{(0)})_{ik} = 0.3$ for |i k| = 1. $\pi_0 = \pi_1 = 0.5$. Ω is a 200 × 200 sparse symmetric matrix with $\Omega_{10,10} = -0.3758$, $\Omega_{10,30} = 0.0616, \Omega_{10,50} = 0.2037, \Omega_{30,30} = -0.5482, \Omega_{30,50} = 0.0286, \Omega_{50,50} = -0.4614$. $\boldsymbol{\delta} = (0.6, 0.8, \mathbf{0}_{198})^T$.
- Minimal discriminative set $S^* = \{j : \delta_j \neq 0\} \cup \{j : \Omega_{ij} \neq 0, \exists i\} = \{1, 2, 10, 30, 50\}.$
- $\circ\,$ Training data size $n\in\{200,400,1000\}.$ Test data size is 1000. Repeat for 200 times.

Test error

Table: Summary of test classification error rates for each classifier under various sample sizes over 200 repetitions. The results are presented as mean values with the standard deviations in parentheses

	n = 200	n = 400	n = 1000
SRaSE	30.82(3.29)	28.68(3.23)	26.12(2.66)
$SRaSE_1$	<i>27.58</i> (2.33)	<i>24.64</i> (1.85)	<i>23.03</i> (1.38)
$SRaSE_2$	<i>27.36</i> (2.67)	24.04 (1.74)	22.63 (1.41)
RaSE-LDA	37.3(3.17)	36.11(1.97)	35.67(1.73)
RaSE-QDA	32.52(2.90)	30.44(2.60)	29(1.97)
RaSE-KNN	31.1(3.23)	27.83(2.41)	25.22(1.56)
$RaSE_1$ -LDA	36.09(2.87)	32.82(1.74)	32.68(1.49)
$RaSE_1$ -QDA	26.83(2.47)	25.07(1.89)	<i>23.53</i> (1.50)
$RaSE_1$ -KNN	28.76(2.60)	25.88(1.98)	24.18(1.47)
$RaSE_2$ -LDA	38.09(2.48)	33.69(1.83)	32.71(1.55)
$RaSE_2$ -QDA	<i>26.99</i> (2.68)	24.87(1.99)	23.11(1.60)
$RaSE_2$ -KNN	28.73(2.56)	25.46(1.82)	<i>23.76</i> (1.54)
LDA	49.03(1.94)	42.88(1.82)	38.68(1.70)
QDA	NA	NA	45.13(1.58)
KNN	45.67(1.78)	44.63(2.02)	43.43(1.63)
RF	37.34(2.91)	31.61(2.19)	27.42(1.60)

-

Selected percentage of features in RaSE

Selected percentage of base classifier in Super RaSE

Figure: The average selected proportion for each base method for different sample sizes (corresponding to each column) and iteration number (corresponding to each row) in Model 2 (QDA).

Madelon

- An artificial dataset from NIPS 2003 feature selection challenge. (Guyon et al., 2005)
- $\circ\,$ It is generated from 32 clusters (placed on vertices of hypercube), which are assigned class 0, 1 randomly.
- 20 out of 500 features are signals.
- \circ Total number of observations: 2000 = 1000 (class 0) + 1000 (class 1)
- Training data size: $n \in \{200, 500, 1000\}$.
- The remained data is used as test data. Repeat the random split 200 times.

Test error

Method	n = 200	n = 500	n = 1000
RaSE-LDA	44.13 _{3.73}	39.69 _{1.60}	39.16 _{1.27}
RaSE-QDA	44.55 _{3.50}	40.45 _{1.71}	39.89 _{1.51}
RaSE-kNN	34.89 _{3.10}	26.49 _{2.71}	21.35 _{1.94}
$RaSE_1$ -LDA	45.98 _{3.00}	40.162.39	38.69 _{1.11}
$RaSE_1$ -QDA	45.01 _{5.32}	37.73 _{3.28}	34.22 _{2.24}
$RaSE_1-kNN$	31.71 _{4.10}	21.09 _{2.53}	18.97 _{1.73}
RP-LDA	41.34 _{1.84}	39.85 _{1.14}	39.53 _{1.32}
RP-QDA	40.03 _{1.63}	39.31 _{1.59}	38.94 _{1.61}
RP-kNN	40.15 _{1.79}	39.07 _{1.42}	38.54 _{1.46}
LDA	†	49.71 _{1.37}	47.46 _{1.37}
QDA	†	†	†
kNN	36.23 _{1.72}	31.68 _{1.43}	28.61 _{1.37}
sLDA	43.18 _{3.30}	40.662.18	39.50 _{1.29}
RAMP	48.863.67	42.33 _{5.30}	38.56 _{1.12}
NSC	42.07 _{2.83}	40.21 _{1.22}	$40.10_{1.24}$
RF	44.23 _{2.90}	$38.52_{1.58}$	34.46 _{1.48}

*: the best classifier **: the one within 1 sd ---†: not applicable

Selected percentage of features

Outline

Introduction

- 2 RaSE classification algorithm
- 3 RaSE screening
- Super RaSE
- 5 Numerical experiments

• We introduced a new ensemble classification framework RaSE, which enjoys the following properties:

- We introduced a new ensemble classification framework RaSE, which enjoys the following properties:
 - ▷ It can be coupled with any base classifier.

- We introduced a new ensemble classification framework RaSE, which enjoys the following properties:
 - ▷ It can be coupled with any base classifier.
 - ▷ It provides an intuitive way for feature ranking and screening.

- We introduced a new ensemble classification framework RaSE, which enjoys the following properties:
 - ▷ It can be coupled with any base classifier.
 - ▷ It provides an intuitive way for feature ranking and screening.
- We connected random subspace method and the sparse classification problems, and studied the theoretical properties of RaSE.

- We introduced a new ensemble classification framework RaSE, which enjoys the following properties:
 - ▷ It can be coupled with any base classifier.
 - ▷ It provides an intuitive way for feature ranking and screening.
- $\circ\,$ We connected random subspace method and the sparse classification problems, and studied the theoretical properties of RaSE.
- The effectiveness of RaSE was verified via extensive numerical experiments.
- We also proposed the Super RaSE, which can work with a base classifier set.

Thanks!

- R package RaSEn is available on CRAN: https://cran.r-project.org/web/packages/RaSEn/
- Tian, Y. & Feng, Y. (2021). RaSE: Random Subspace Ensemble Classification. Journal of Machine Learning Research.
- Tian, Y. & Feng, Y. (2021). RaSE: A variable screening framework via random subspace ensembles. Journal of the American Statistical Association.
- Zhu, J. & Feng, Y. (2021). Super RaSE: Super Random Subspace Ensemble Classification. Manuscript.

References I

- Ahn, H., Moon, H., Fazzari, M. J., Lim, N., Chen, J. J., and Kodell, R. L. (2007). Classification by ensembles from random partitions of high-dimensional data. *Computational Statistics & Data Analysis*, 51(12):6166--6179.
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Proceeding of IEEE international symposium on information theory.
- Blaser, R. and Fryzlewicz, P. (2016). Random rotation ensembles. *The Journal of Machine Learning Research*, 17(1):126--151.

Breiman, L. (1996). Bagging predictors. *Machine learning*, 24(2):123--140.

Breiman, L. (2001). Random forests. *Machine learning*, 45(1):5--32.

Bryll, R., Gutierrez-Osuna, R., and Quek, F. (2003). Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. *Pattern recognition*, 36(6):1291--1302.

References II

- Cannings, T. I. and Samworth, R. J. (2017). Random-projection ensemble classification. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 79(4):959--1035.
- Chen, J. and Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. *Biometrika*, 95(3):759--771.
- Chen, J. and Chen, Z. (2012). Extended bic for small-n-large-p sparse glm. *Statistica Sinica*, pages 555--574.
- Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis. *Journal of the American Statistical Association*, 70(352):892--898.
- Fan, Y., Kong, Y., Li, D., Zheng, Z., et al. (2015). Innovated interaction screening for high-dimensional nonlinear classification. *The Annals of Statistics*, 43(3):1243--1272.

References III

- Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 75(3):531--552.
- Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. In *European* conference on computational learning theory, pages 23--37. Springer.
- Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. (2005). Result analysis of the nips 2003 feature selection challenge. In *Advances in neural information processing systems*, pages 545--552.
- Hall, P., Park, B. U., Samworth, R. J., et al. (2008). Choice of neighbor order in nearest-neighbor classification. *The Annals of Statistics*, 36(5):2135--2152.
- Ho, T. K. (1998). The random subspace method for constructing decision forests. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(8):832--844.

References IV

- Kohavi, R., John, G. H., et al. (1997). Wrappers for feature subset selection. *Artificial intelligence*, 97(1-2):273--324.
- Li, Q. and Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data. *Statistica Sinica*, pages 457--473.
- Mai, Q., Zou, H., and Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions. *Biometrika*, 99(1):29--42.
- Samworth, R. J. et al. (2012). Optimal weighted nearest neighbour classifiers. *The Annals of Statistics*, 40(5):2733--2763.
- Schwarz, G. et al. (1978). Estimating the dimension of a model. *The annals of statistics*, 6(2):461--464.
- Tian, Y. and Feng, Y. (2021). Rase: Random subspace ensemble classification. J. Mach. Learn. Res., 22:45--1.
- Zhang, Q. and Wang, H. (2011). On bic's selection consistency for discriminant analysis. *Statistica Sinica*, pages 731--740.

Assumptions for QDA

 $\begin{array}{l} \text{Recall QDA model:} \\ \boldsymbol{x} \sim \pi_0 N(\boldsymbol{\mu}_{p \times 1}^{(0)}, \boldsymbol{\Sigma}_{p \times p}^{(0)}) + \pi_1 N(\boldsymbol{\mu}_{p \times 1}^{(1)}, \boldsymbol{\Sigma}_{p \times p}^{(1)}), \pi_0 + \pi_1 = 1. \end{array}$

Assumptions for QDA

Recall QDA model:
$$m{x} \sim \pi_0 N(m{\mu}_{p imes 1}^{(0)}, \Sigma_{p imes p}^{(0)}) + \pi_1 N(m{\mu}_{p imes 1}^{(1)}, \Sigma_{p imes p}^{(1)}), \pi_0 + \pi_1 = 1.$$

Suppose the following conditions are satisfied, where m,~M,~M' are constants, and denote $\Omega_{S,S}^{(r)}=(\Sigma_{S,S}^{(r)})^{-1}$:

- Condition 1: $\lambda_{\min}(\Sigma^{(r)}) \ge m > 0, \lambda_{\max}(\Sigma^{(r)}) \le M < \infty, r = 0, 1;$
- \circ Condition 2: $\| oldsymbol{\mu}^{(1)} oldsymbol{\mu}^{(0)} \|_{\infty} \leq M' < \infty;$
- **Condition 3**: Denote $\gamma_l = \inf_j \left| (\Omega_{S,S}^{(1)} \boldsymbol{\mu}_S^{(1)} \Omega_{S,S}^{(0)} \boldsymbol{\mu}_S^{(0)})_j \right| > 0, \gamma_q = \inf_i \sup_j \left| (\Omega_{S_q^*, S_q^*}^{(1)} \Omega_{S_q^*, S_q^*}^{(0)})_{ij} \right| > 0$, then

$$\min\{\gamma_l^2, \gamma_q^2, \gamma_q\} \gg D^2 \sqrt{\frac{\log p}{n}} = o(1).$$

Consistency

QDA consistency of RIC (Tian and Feng (2021))

For QDA model, under Assumptions for LDA, we have (i) If $Dc_n/\gamma^2 = o(1)$, then the following screening consistency holds for RIC: If $D^2c_n/\min\{\gamma_l^2,\gamma_q^2,\gamma_q\} = o(1)$, then RIC is screening consistent:

$$\mathbb{P}\left(\sup_{\substack{S:S \supseteq S^* \\ |S| \le D}} \mathsf{RIC}_n(S) < \inf_{\substack{S:S \supseteq S^* \\ |S| \le D}} \mathsf{RIC}_n(S)\right) \ge 1 - O\left(p^2 \exp\left\{-Cn\left(\frac{\min\{\gamma_l^2, \gamma_q^2, \gamma_q\}}{D^2}\right)^2\right\}\right)$$

 $\rightarrow 1.$

(ii) Further, if $c_n \gg D^2 \sqrt{\frac{\log p}{n}}$, then RIC is weakly consistent: $\mathbb{P}\left(\mathsf{RIC}_n(S^*) = \inf_{S:|S| \le D} \mathsf{RIC}_n(S)\right) \ge 1 - O\left(p^2 \exp\left\{-Cn\left(\frac{c_n}{D^2}\right)^2\right\}\right) \to 1.$

In practice, we set $c_n = n^{-1/2} \log \log n$.

 $\circ\,$ Under some conditions, similar results can be extended to more general setting.

The requirement of B_2 in vanilla RaSE

Corollary (Tian and Feng, 2021): By using RIC (or any other criterion), we have

$$\mathbb{P}(S_{1*} \supseteq S^*) \ge \underbrace{\mathbb{P}\left(\sup_{\substack{S:S \supseteq S^* \\ |S| \le D}} \mathsf{RIC}_n(S) < \inf_{\substack{S:S \supseteq S^* \\ |S| \le D}} \mathsf{RIC}_n(S)\right)}_{\Rightarrow 1 \text{ by screening consistency}} \cdot \mathbf{P}\left(\bigcup_{j=1}^{B_2} \{S_{1j} \supseteq S^*\}\right)$$

by screening consistency

where

$$\mathbf{P}\left(\bigcup_{j=1}^{B_2} \{S_{1j} \supseteq S^*\}\right) = 1 - (1 - p_{S^*})^{B_2} \ge 1 - O\left(\exp\left\{-B_2 p_{S^*}\right\}\right).$$

Here $p_{S^*} = \mathbf{P}(S_{11} \supseteq S^*) = \frac{1}{D} \sum_{n^* \le d \le D} \frac{\binom{p-p^*}{d-p^*}}{\binom{p}{d}}$. We hope there holds

$$B_2 p_{S^*} \gg 1 \quad \Rightarrow \quad B_2 \gg \left(\frac{p-p^*+1}{D}\right)^{p^*}$$
Relax the requirement of B_2 using iterative RaSE

Under a set of conditions, where we assume $D \log \log p \ll \log p$, we have the following result. \bar{p}^* is a positive integer smaller than p (defined in the conditions, omitted here).

Sure coverage by iterative RaSE (Tian and Feng (2021))

For Algorithm 2, the B_2 in the first step is set as

$$Dp^{\bar{p}^*} \lesssim B_2 \ll \left(\frac{p}{\bar{p}^*D}\right)^{\bar{p}^*+1}$$

and ${\it B}_2$ in the following steps is set as

$$(D+C_0)^D p^{\bar{p}^*} (\log p)^{p^*} \lesssim B_2 \ll \left(\frac{p}{\bar{p}^* D}\right)^{\bar{p}^*+1}$$

Set B_1 such that $B_1 \gg \log p^*$. After $T \ge \lceil \frac{p^*}{\bar{p}^*} \rceil$ iterations, as $n, B_2 \to \infty$ there holds

$$\mathbb{P}(S_{1*}^{(T)} \not\supseteq S^*) \to 0.$$

Relax the requirement of B_2 using iterative RaSE

 $\circ~\mbox{Now suppose }D,p^*$ are all fixed constants.

Relax the requirement of B_2 using iterative RaSE

- $\circ~$ Now suppose D, p^* are all fixed constants.
- $\circ\,$ A sufficient condition for B_2 in iterative RaSE to achieve sure coverage is

$$B_2 \gtrsim p^{\bar{p}^*} (\log p)^{p^*}.$$

When $\bar{p}^* < p$, this is much weaker than the requirement $B_2 \gg p^{p^*}$

for vanilla RaSE implied by the corollary.