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A new paradigm of “science”: deep learning
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• Collect data and buy GPU first

• Scale model with data and computational
resources

• End to end: Representation, computation,
prediction
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However, making deep learning a science requires...

• Why don’t heavily parameterized neural
networks overfit the data?

• What is the effective number of parameters?

• Why doesn’t backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

Disclaimer: This talk doesn’t attempt to answer these fundamental questions...
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Have we really understood deep learning?

Limited scopes...

• Assume extremely large width and shallow depth

• Data assumed to be from Gaussian mixtures

• Linear activation

• Use gradient descent instead of stochastic gradient descent

• ......
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Need “small” but useful surrogate models

A bitter lesson learned
Very difficult to build a comprehensive foundation for deep learning...

What is a good surrogate model?

• Mathematically tractable

• Yet maintains some characteristics of deep learning

• Insights into the practice of deep learning
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This talk: a top-down viewpoint



Collaborators

• Cong Fang (Penn CS)

• Hangfeng He (Penn CS)

• Qi Long (Penn Biostats)
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Illustration of our top-down approach

(a) 1-Layer-Peeled Model (b) 2-Layer-Peeled Model
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Setup for deep learning

Neural network for K-class classification:

f(x;Wfull) = WLσ (WL−1σ(· · ·σ(W1x) · · · ))

• σ(·) is a nonlinear activation function

• Wfull := {W1,W2, . . . ,WL} collects the weights

• Bias omitted

Optimization problem:

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L(f(xk,i;Wfull),yk) +
λ

2
‖Wfull‖2

• yk is a one-hot vector denoting the k-th class

• λ weight decay parameter, L cross-entropy loss
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A peek at Layer-Peeled Model

f(x;Wfull) = WLσ (WL−1σ(· · ·σ(W1x) · · · ))

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L(f(xk,i;Wfull),yk) +
λ

2
‖Wfull‖2

• Difficult to pinpoint how any layer Wl influences the output

• hk,i represents σ (WL−1σ(· · ·σ(W1xk,i) · · · ))

• Here WL = [w1, . . . ,wK ]>
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Derivation

Rewrite the optimization problem as

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLh(xk,i;W−L),yk) +
λ

2
‖WL‖2 +

λ

2
‖W−L‖2

• Last-layer feature h(xk,i;W−L) := σ(WL−1σ(· · ·σ(W1xk,i) · · · ))

From the dual viewpoint, a minimum is an optimal solution to

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLhk,i,yk)

s.t. ‖WL‖2 6 C1

• Not a one-to-one mapping

• H(W−L) := [h(xk,i;W−L) : 1 6 k 6 K, 1 6 i 6 nk]
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Derivation: an ansatz

Assumption

{
H(W−L) : ‖W−L‖2 6 C2

}
≈

{
H :

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 6 C ′2

}

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLhk,i,yk)

s.t. ‖WL‖2 6 C1

H ∈
{
H(W−L) : ‖W−L‖2 6 C2

}

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH

• Self-duality of `2 spaces

• More justification for the ansatz later
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More on Layer-Peeled Model

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH

• Terminal phase of deep learning training

• EW , EH depend on weight decay λ

• Nonconvex but analytically tractable

• Does not explicitly depend on data

Cons: information lost
Pros: robust conclusion
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Prediction constraint

Representation constraint
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Ask me anything about this “apple”

Is it mathematically tractable? Yes

Does it maintain some characteristics of deep
learning?

Yes

Can it provide insights into the practice of deep
learning?

I think so

Does it answer Leo Breiman’s questions? Unfortunately, not
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Outline

1. Explaining Neural Collapse

2. Predicting Minority Collapse

3. How to Mitigate Minority Collapse?
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Balanced training

All class sizes are equal: n1 = n2 = · · · = nK

What can the Layer-Peeled Model say?

Theorem

Any global minimizer W ? ≡ [w?
1 , . . . ,w

?
K ]
>
,H? ≡ [h?

k,i : 1 6 k 6 K, 1 6 i 6 n]
with cross-entropy loss obeys

h?
k,i = Cw?

k = C ′m?
k,

where [m?
1, . . . ,m

?
K ] forms a K-simplex equiangular tight frame (ETF)

• h?
k,i depends only on the class membership!

• C =
√
EH/EW , C ′ =

√
EH

• What is a K-simplex ETF?
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between
any pair

Equivalently, random variables ξ1, . . . , ξK of mean 0 and variance 1. If Eξiξj = ρ
for all i 6= j, what’s the min of ρ?

largest angle = arccos

(
− 1

K − 1

)

K = 2 K = 3 K = 4
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Return to the theorem for balanced training
All class sizes are equal: n1 = n2 = · · · = nK

Theorem

The solution to the Layer-Peeled Model in balanced training satisfies

h?
k,i = Cw?

k = C ′m?
k

• German shepherd, husky, chihuahua, rottweiler are all dogs!
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This is simply neural collapse

Papyan, Han, and Donoho discovered neural collapse in 2020:

1 Variability collapse: features collapse to their class means

2 Class means centered at their global mean collapse to ETF

3 Up to scaling, last-layer classifiers each collapse to class means

4 Classifier’s decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness
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Concurrent works [MPP20, EW20, LS20] also justified
neural collapse using different models



Animation of neural collapse

Credit: Papyan, Han, and Donoho
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Snapshot of neural collapse

converge to having equal length, forming equal-sized an-56

gles between any given pair, and being the maximally57

pairwise-distanced configuration constrained to the pre-58

vious two properties. This configuration is identical to59

a previously studied configuration in the mathematical60

sciences known as Simplex Equiangular Tight Frame61

(ETF) (6). See Definition 1.62

(NC3) Convergence to self-duality: The class-means63

and linear classifiers – although mathematically quite64

di�erent objects, living in dual vector spaces – converge65

to each other, up to rescaling. Combined with (NC2), this66

implies a complete symmetry in the network classifiers’67

decisions: each iso-classifier-decision region is isometric68

to any other such region by rigid Euclidean motion;69

moreover the class-means are each centrally located70

within their own specific regions, so there is no tendency71

towards higher confusion between any two classes than72

any other two.73

(NC4) Simplification to Nearest Class-Center (NCC):74

For a given deepnet activation, the network classifier75

converges to choosing whichever class has the nearest76

train class-mean (in standard Euclidean distance).77

We give a visualization of the phenomena (NC1)-(NC3) in78

Figure 1�, and define Simplex ETFs (NC2) more formally as79

follows:80

Definition 1 (Simplex ETF). A standard Simplex ETF is a81

collection of points in RC specified by the columns of82

Mı =
Ú

C

C ≠ 1

1
I ≠ 1

C
€

2
, [1]83

where I œ RC◊C is the identity matrix, and C œ RC is the84

ones vector. In this paper, we allow other poses, as well as85

rescaling, so the general Simplex ETF consists of the points86

specified by the columns of M = –UMı œ Rp◊C , where87

– œ R+ is a scale factor, and U œ Rp◊C (p Ø C) is a partial88

orthogonal matrix (U€U = I).89

Properties (NC1)-(NC4) show that a highly symmetric and90

rigid mathematical structure with clear interpretability arises91

spontaneously during deep learning feature engineering, iden-92

tically across many di�erent datasets and model architectures.93

(NC2) implies that the di�erent feature means are ‘equally94

spaced’ around the sphere in their constructed feature space;95

(NC3) says the same for the linear classifiers in their own dual96

space; and moreover, that the linear classifiers are ‘the same97

as’ the class means, up to possible rescaling. These mathe-98

matical symmetries and rigidities vastly simplify the behavior99

and analysis of trained classifiers, as we show in Section 5100

below, which contrasts the kind of qualitative understanding101

previously available from theory, against the precise and highly102

constrained predictions possible with (NC4).103

(NC1)-(NC4) o�er theoretically-established performance104

benefits: stability against random noise and against adversarial105

noise. And indeed, this theory bears fruit. We show that106

�Figure 1 is, in fact, generated using real measurements, collected while training the VGG13 deep-
net on CIFAR10: For three randomly selected classes, we extract the linear classifiers, class-
means, and a subsample of twenty last-layer features at epochs 2, 16, 65, and 350. These entities
are then rotated, rescaled, and represented in three-dimensions by leveraging the singular-value
decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.

Fig. 1. Visualization of Neural Collapse: The figures depict, in three dimensions,
Neural Collapse as training proceeds, from top to bottom. Green spheres represent
the vertices of the standard Simplex ETF (Definition 1), red ball-and-sticks represent
linear classifiers, blue ball-and-sticks represent class-means, and small blue spheres
represent last-layer features. For all objects, we distinguish different classes via
the shade of the color. As training proceeds, last-layer features collapse onto their
class-means (NC1), class-means converge to the vertices of the Simplex ETF (NC2),
the linear classifiers approach their corresponding class-means (NC3). An animation
can be found here.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Donoho et al.
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Neural collapse can justify the Layer-Peeled Model



About the ansatz

Recall

{
H(W−L) : ‖W−L‖2 6 C2

}
≈

{
H :

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 6 C ′2

}

This gives

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH
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What happens without the ansatz?

Without the ansatz:

min
W ,H

1

N

K∑
k=1

n∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

K∑
k=1

1

n

n∑
i=1

‖hk,i‖qq ≤ EH

Theorem

Assume K > 3 and p ≥ K . For any q ∈ (0, 2) ∪ (2,∞), neural collapse does not
emerge in the model above
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Is the Layer-Peeled Model satisfactory?

A higher standard: can it predict new stuff?



Is the Layer-Peeled Model satisfactory?
A higher standard: can it predict new stuff?



Outline

1. Explaining Neural Collapse

2. Predicting Minority Collapse

3. How to Mitigate Minority Collapse?
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Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA

= nA)

• The remaining KB := K −KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio

22 / 42



Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA

= nA)

• The remaining KB := K −KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio

22 / 42



Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA

= nA)

• The remaining KB := K −KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio

22 / 42



Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA

= nA)

• The remaining KB := K −KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio

22 / 42



No closed-form expression for
the solutions to LPM...



Technique: Convex relaxation

• Define hk as the feature mean of the k-th class

hk :=
1

nk

nk∑
i=1

hk,i

• Introduce a new decision variable

X :=
[
h1,h2, . . . ,hK ,W

>]> [h1,h2, . . . ,hK ,W
>] ∈ R2K×2K

Then

• X is positive semidefinite

•
1

K

K∑
k=1

X(k, k) =
1

K

K∑
k=1

‖hk‖2≤
1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH

•
1

K

2K∑
k=K+1

X(k, k) =
1

K

K∑
k=1

‖wk‖2 ≤ EW
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Technique: Convex relaxation

min
X∈R2K×2K

K∑
k=1

nk
N
L(zk,yk)

s.t. zk = [X(k,K + 1),X(k,K + 2), . . . ,X(k, 2K) ]
>

1

K

K∑
k=1

X(k, k) ≤ EH ,
1

K

2K∑
k=K+1

X(k, k) ≤ EW

X � 0

• Not a semidefinite program in the strict sense because a semidefinite
program uses a linear objective function
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Nonconvex optimization via convex optimization

Lemma

Assume p ≥ 2K and L is convex in its first argument. Let X? be a minimizer of
the convex relaxation. Define (H?,W ?) as[

h?
1,h

?
2, . . . ,h

?
K , (W

?)>
]
= P (X?)1/2

h?
k,i = h?

k, for all 1 6 i 6 n, 1 6 k 6 K

Then (H?,W ?) is a minimizer of the Layer-Peeled Model

• No loss of information when we study the Layer-Peeled Model through a
convex program

• But class means no longer collapse to classifiers

• Alternatives of convex relaxation exist [BMP08, HV19]
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A numerical surprise

Average cosine of between-minority-class angles
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(c) EW = 1, EH = 5
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(d) EW = 1, EH = 10

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R ≥ R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!
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Minority Collapse

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R ≥ R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition

Let (H?,W ?) be any global minimizer of the Layer-Peeled Model. As
R ≡ nA/nB →∞, we have

limw?
k −w?

k′ = 0p, for all KA < k < k′ 6 K

• The prediction on the minority classes becomes completely at random
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Illustration of Minority Collapse
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Intuition for Minority Collapse

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH

Competition for space!
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Is Minority Collapse a real thing?



Minority Collapse in experiments
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(e) VGG11 on FashionMNIST
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(f) VGG13 on CIFAR10
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(g) ResNet18 on FashionMNIST
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(h) ResNet18 on CIFAR10
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LPM predictions match experiments
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Layer-Peeled Model (LPM, in dotted lines) and real DNNs (DL, in solid lines) with
VGG on CIFAR10
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Outline

1. Explaining Neural Collapse

2. Predicting Minority Collapse

3. How to Mitigate Minority Collapse?
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Idea: make the minority stronger!



Oversample minority classes

Oversampling duplicates training example from minority classes [JK09]

The adjusted optimization problem:

1

nAKA + wrnBKB

[
KA∑
k=1

nA∑
i=1

L(f(xk,i;Wfull),yk)

+ wr

K∑
k=KA+1

nB∑
i=1

L(f(xk,i;Wfull),yk)

]

while keeping the penalty term
λ

2
‖Wfull‖2
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Layer-Peeled Model with oversampling

min
H,W

1

nAKA + wrnBKB

[
KA∑
k=1

nA∑
i=1

L(Whk,i,yk) + wr

K∑
k=KA+1

nB∑
i=1

L(Whk,i,yk)

]

s.t.
1

K

K∑
k=1

‖wk‖2 ≤ EW

1

K

KA∑
k=1

1

nA

nA∑
i=1

‖hk,i‖2 +
1

K

K∑
k=KA+1

1

nB

nB∑
i=1

‖hk,i‖2 ≤ EH
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Layer-Peeled Model with oversampling

Theorem
Assume p ≥ 2K and L is convex in the first argument. Let X? be any minimizer
of the convex relaxation with n1 = n2 = · · · = nKA

= nA and
nKA+1 = nKA+2 = · · · = nK = wrnB . Define (H?,W ?) as[

h?
1,h

?
2, . . . ,h

?
K , (W

?)>
]
= P (X?)1/2

h?
k,i = h?

k, for all 1 6 i 6 nA, 1 6 k 6 KA

h?
k,i = h?

k, for all 1 6 i 6 nB ,KA < k 6 K

Then (H?,W ?) is a global minimizer of the oversampling-adjusted
Layer-Peeled Model.

• The size of minority class is now in effect wrnB instead of nB

• If the oversampling rate wr = nA/nB ≡ R, neural collapse is back!
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Effect of oversampling, in theory
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Can oversampling really resolve Minority Collapse?



Oversampling mitigates Minority Collapse
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(i) VGG11 on FashionMNIST
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(j) VGG13 on CIFAR10
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(k) ResNet18 on FashionMNIST
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(l) ResNet18 on CIFAR10
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Test performance

Network architecture VGG11 ResNet18

No. of majority classes KA = 3 KA = 5 KA = 7 KA = 3 KA = 5 KA = 7

Original (minority) 15.29 20.30 17.00 30.66 34.26 5.53
Oversampling (minority) 41.13 57.22 30.50 37.86 53.46 8.13
Improvement (minority) 25.84 36.92 13.50 7.20 19.20 2.60

Original (overall) 40.10 57.61 69.09 50.88 64.89 66.13
Oversampling (overall) 58.25 76.17 73.37 55.91 74.56 67.10
Improvement (overall) 18.15 18.56 4.28 5.03 9.67 0.97

Table: Test accuracy (%) on FashionMNIST when R = 1000. “Original (minority)” means that the test accuracy is
evaluated only on the minority classes and oversampling is not used. When oversampling is used, we report the
best test accuracy among four oversampling rates: 1, 10, 100, and 1000.

The best test accuracy is not achieved at wr = 1000, indicating that
oversampling with a large wr would impair the test performance
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Remarks on oversampling

• Large value of wr can mitigate Minority Collapse on the training set

• But might degrade test accuracy

• Remains open: how to select an oversampling rate?

• Other approaches such as fixing the classifiers?
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Concluding remarks



One-line summary

It’s a small but useful surrogate model
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Future directions

Immediate connections:

• Go diverse: general imbalanced datasets

• Try various loss functions

• Relate Minority Collapse to fairness

More broadly:

• Multiple Layer-Peeled Model:

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(f(hk,i,W(L−m+1):L),yk)

s.t.
1

K
‖W(L−m+1):L‖2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk,i‖2 ≤ EH

• Model the training dynamics and test performance

• Why does the ansatz yield reasonable prediction?
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Take-home messages
Layer-Peeled Model = minimal integration of

prediction (W ) + representation (H)

• Nonconvex but analytical

• Explain neural collapse

• Predict Minority Collapse

• Practical insights into deep learning

Reference

Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in
Imbalanced Training
with Cong Fang, Hangfeng He, Qi Long. Proceedings of the National Academy of
Sciences (PNAS), 2021

• Code: https://github.com/HornHehhf/LPM

• NSF CAREER and TRIPODS, and Sloan
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