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The Bitter Lesson

Rich Sutton
March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is

oore's law, or rather its generalization of continued exponentially falling cost per unit of computation.
Most Al research has been conducted as if the computation available to the agent were constant (in which
case leveraging human knowledge would be one of the only ways to improve performance) but, over a
slightly Longer time than a typical research project, massively more computation inevitably becomes
available. Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage
their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to ea\:h oiher, butin prachce they tend to. Time spent on one
s time not spent on the other. There are ps i tment in one ap pmach or the
other. And the human-knowledge approacL tende to complicate methods in ways that make them less
suited to taking advantage of general methods leveraging computation. There were many examples of Al
researchers' belated learning of this bitter lesson, and it is instructive to review some of the most

prominent. 1/42
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networks overfit the data?

2/42



However, making deep learning a science requires...

e Why don't heavily parameterized neural
networks overfit the data?

e What is the effective number of parameters?

2/42



However, making deep learning a science requires...

e Why don't heavily parameterized neural
networks overfit the data?

e What is the effective number of parameters?

e Why doesn't backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

2/42



However, making deep learning a science requires...

e Why don't heavily parameterized neural
networks overfit the data?

e What is the effective number of parameters?

Leo Breiman

e Why doesn't backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

Disclaimer: This talk doesn't attempt to answer these fundamental questions...
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Have we really understood deep learning?

Rope?
Snake?

Spear? Wall?

e Assume extremely large width and shallow depth
e Data assumed to be from Gaussian mixtures
e Linear activation

e Use gradient descent instead of stochastic gradient descent

3/42



Need “small” but useful surrogate models

A bitter lesson learned
Very difficult to build a comprehensive foundation for deep learning...
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Need “small” but useful surrogate models

A bitter lesson learned
Very difficult to build a comprehensive foundation for deep learning...

What is a good surrogate model?

e Mathematically tractable
e Yet maintains some characteristics of deep learning
e |Insights into the practice of deep learning

4/42



This talk: a top-down viewpoint




Collaborators

e Cong Fang (Penn CS)
e Hangfeng He (Penn CS)
e Qi Long (Penn Biostats)
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lllustration of our top-down approach

‘ Layer L [ ] ‘ Layer L [ ]
Layer L-1 [ ] Layer L-1 [ ]
Layer L2 | ) Laver1-2 )
Layer 2 [ ] Layer 2 [ ]

it i
Layer 1 [ ] Layer 1 [ ]
(a) 1-Layer-Peeled Model (b) 2-Layer-Peeled Model
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Setup for deep learning

Neural network for K-class classification:
fx; Wiy) = Wrpo (Wp_1o(---0(Wizx)---))
e o(-)is anonlinear activation function

o Wy :={Wi,Ws,..., W} collects the weights
e Bias omitted
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Setup for deep learning

Neural network for K -class classification:

J (@ Wia)) = Wro (Wi_io(---o(Whz)--))

e o(-)is anonlinear activation function
o Wy :={Wi,Ws,..., W} collects the weights
e Bias omitted

Optimization problem:
K ng

A
min — ZZ»C (ki3 Whan), Yr) + 5\\"‘/fu||||2

Wi k 1i=1

e 1y, is a one-hot vector denoting the k-th class

e )\ weight decay parameter, £ cross-entropy loss
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A peek at Layer-Peeled Model

J (@ Wia)) = Wro (Wi_io(---o(Wiz)--))

K ng

o A ,
min o ; ;[’(f(xk,u Wh), yr) + §||VVfun||

e Difficult to pinpoint how any layer W; influences the output
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J (@ Wia)) = Wio (Wi_yo(---o(Wiz) )

K ng

. 1 A
min 30> LWk ye) + 5 Wl

Wy, H
E k=1 i=1
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A peek at Layer-Peeled Model

fle; W) = Weo (Wir_io(---o(Wix)---))
1 K ng
&2%%{ jvrg;::g: ‘IZL’lk77yk)
LS
st 2> llwill < Ew
k=1
1 K 1 Nk
Eznizllh’”” < En

k=1

e Difficult to pinpoint how any layer W; influences the output

e hy ,represents o (Wp_i0(---

o Here W = ['wl,...,wK}T

oc(Whxk;) - -

)
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Derivation

Rewrite the optimization problem as

K Nk
1 A A
oo W A 2 M2
Jnin N;;_l §:1 L(WLh(zk,i; W L),yk)+2||W/L|| +5IW-i]

e Llast-layer feature h(xy ;; W_r) == c(Wi_10(---c(Wizk,) - +))
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e Llast-layer feature h(xy ;; W_r) == o(Wi_10(---0(Wizk,) -+ ))
From the dual viewpoint, a minimum is an optimal solution to

K Nk
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k=11=1
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® Not a one-to-one mapping
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Derivation: an ansatz
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Derivation: an ansatz

{HW_p): [W_|? < Cs} {H Z le will® < }

K ng

VI‘}?II N;;E Wihp.i, yi)

st [Wr? <O
He {HW._p): |[W_L|> < Cs}
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Derivation: an ansatz

K Nk
1
{HW_L): [W_L|? < Co} ~ {H: § :n_k § lhll” < Cg}
s=Il =1

1 Nk
i = h
o min N2 ; (Whi.i, yr)
V{}Eﬁ N;;E Wihi, yr) 2
st W2 < ¢ s.t. lwe]]” < Ew

He {HW._p): |[W_L|> < Cs}
Nk

1
e 2o el < B
n :

= -

= =
TTMN M= Mw

v,

e Self-duality of ¢ spaces
e More justification for the ansatz later
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More on Layer-Peeled Model

Prediction constraint

Representation constraint
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More on Layer-Peeled Model

1 K ng
min - Z Z L(W hy.i, yi)
U A k=1 i=1 — Prediction constraint
L 3 / R I j
2 — Representation constraint
s.t. E’;HwkH < Ew P

K

1 1 & 5
T > - [hesll” < En
k=1 =1

e Terminal phase of deep learning training
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More on Layer-Peeled Model

2

K

. 1
min NZZ (Whiis yr)
w. p=il i=il — Prediction constraint
||wkH2 < Ew / — Representation constraint

LS LS g
K= e i '

1

t. —
N e

= EMN

< FEg

Terminal phase of deep learning training

Eyw, Ey depend on weight decay A
e Nonconvex but analytically tractable

Does not explicitly depend on data

e Cons: information lost
e Pros: robust conclusion
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Ask me anything about this “apple”

Is it mathematically tractable?

Does it maintain some characteristics of deep
learning?

Can it provide insights into the practice of deep
learning?

Does it answer Leo Breiman'’s questions?

Yes

Yes

| think so

Unfortunately, not

12/42



Outline

1. Explaining Neural Collapse
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Balanced training

All class sizes are equal: ny =ng = --- = ng
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What can the Layer-Peeled Model say?

Theorem

%
|

Any global minimizer W* = [w*, ... wi] ,H* =] kit 1<k K 1<i<n]
with cross-entropy loss obeys

* _ * ! *
ki — Cwj, = C'my,

where [m7,. .., m}] forms a K-simplex equiangular tight frame (ETF)

® hj , depends only on the class membership!

o (= \/EH/EW7CI =+ Eg
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Balanced training

All class sizes are equal: ny =ng = --- = ng

What can the Layer-Peeled Model say?

Theorem

%
|

Any global minimizer W* = [w*, ... wi] ,H* =] kit 1<k K 1<i<n]
with cross-entropy loss obeys

* _ * ! *
ki — Cwj, = C'my,

where [m7,. .., m}] forms a K-simplex equiangular tight frame (ETF)

® hj , depends only on the class membership!

o (= \/EH/EW7CI =+ Eg

e Whatis a K-simplex ETF?
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between J
any pair

Equivalently, random variables {1, . .., £k of mean O and variance 1. If E¢;&; = p
forall i # j, what’s the min of p?

15/42



K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between J
any pair

Equivalently, random variables {1, . .., £k of mean O and variance 1. If E¢;&; = p
forall i # j, what’s the min of p?

1
| t angle = > —
argest angle = arccos ( 7 1) J

15/42



Return to the theorem for balanced training

All class sizes are equal: ny =ng = --- = ng

The solution to the Layer-Peeled Model in balanced training satisfies

* * ! *
kJ—C’wk—ka

e Cerman shepherd, husky, chihuahua, rottweiler are all dogs!
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Return to the theorem for balanced training

All class sizes are equal: ny =ng = --- = ng
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* * ! *
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This is simply neural collapse

Papyan, Han, and Donoho discovered neural collapse in 2020:
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This is simply neural collapse

Papyan, Han, and Donoho discovered neural collapse in 2020:

@ Variability collapse: features collapse to their class means
® Class means centered at their global mean collapse to ETF
© Up to scaling, last-layer classifiers each collapse to class means

O Classifier’s decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness

Concurrent works [MPP20, EW20, LS20] also justified
neural collapse using different models

17/42



Animation of neural collapse

Credit: Papyan, Han, and Donoho
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Animation of neural collapse

Credit: Papyan, Han, and Donoho
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Snapshot of neural collapse

i
o © [4
e®e -

€
Credit: Papyan, Han, and Donoho
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Neural collapse can justify the Layer-Peeled Model



About the ansatz

K ng
1
{HW_p): [W_|? < Ca} = {Hi > e > Mkl < Cé}
k=1 =1

Recall
This gives
min
W.H
s.t.

ni

LW hy i, yr)

=
M=

14i=1

=~
Il

|wi|? < Ew

=[ =

2

1
> lhil® < En
ng

1 =1

> 11>

==
i
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What happens without the ansatz?

Without the ansatz:

n
> L(Whyi,yr)

=1

3
T
2=

==
M= 1= [N

2
|wel|” < Ew

1 n
= heill! < Ex
= il

1 =1

==
i
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What happens without the ansatz?

Without the ansatz:

> L(Whyi,yr)

=1

g
T
2=

==
M= I 104

|[wil|” < Ew

1
E:j{:”’lkl| < FEpgy

1 =1

=| =
i

Assume K > 3 and p > K. Forany g € (0,2) U (2, ), neural collapse does not
emerge in the model above

20/42



Is the Layer-Peeled Model satisfactory?



Is the Layer-Peeled Model satisfactory?
A higher standard: can it predict new stuff?



Outline

2. Predicting Minority Collapse
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Imbalanced training
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Imbalanced training

Datasets often have a disproportionate ratio of observations in each class J

As a simple starting point, assume

e The first K4 majority classes each contain n 4 training examples
(ni=ng=--=ng, =na)
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Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

e The first K4 majority classes each contain n 4 training examples
(ni=ng=--=ng, =na)

e The remaining Kp := K — K4 minority classes each contain np examples
(MK, 41 =NK 42 = - =NKg =NpB)

e Call R:=nu/ng > 1the imbalance ratio

22/42



No closed-form expression for
the solutions to LPM...



Technique: Convex relaxation

e Define h;, as the feature mean of the k-th class

1 &
hy = — hi;

e |ntroduce a new decision variable

X = [hlah%“';hK,WT}T [hlth,"';hK,WT:I c R2K><2K
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Technique: Convex relaxation

e Define h;, as the feature mean of the k-th class

1 &
hy = — hy

e |ntroduce a new decision variable

X = [hlah%“';hK,WT}T [hth,...,hK,WT:I c R2K><2K

Then
e X is positive semidefinite

iim k)ziinh H2<ifin2knh IP<E
Ko , K ’ IRl e

1 2K 1 K
_ 2
= >0 Xk = > ] < B
k=K+1 k=1
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Technique: Convex relaxation

K
XE]R2K><2K Z zk)yk
st oz =[X(k,K+1),X(kK+2),...,X(k2K)]"
1 K 1 2K
— < — <
% Z_‘;X(m@) <Bn, 4 k_ZKHX(k,k) < Ew

=0

>
Y
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Technique: Convex relaxation

al n
. k
min -
XE]R2K><2K Z Nﬁ(zk)yk)
k

st oz =[X(k,K+1),X(kK+2),...,X(k2K)]"
2K

K
1 1
EE X (k,k) < Eq, T E X (k, k) < Ew
P k=K +1

e Not a semidefinite program in the strict sense because a semidefinite
program uses a linear objective function

24/42



Nonconvex optimization via convex optimization

Lemma

Assume p > 2K and L is convex in its first argument. Let X* be a minimizer of
the convex relaxation. Define (H*, W*) as

(R}, h3, ... i, (W)T] = P(X*)'/?
ki=hg, forall1<i<n,1<k<K

Then (H*, W) is a minimizer of the Layer-Peeled Model
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Nonconvex optimization via convex optimization

Lemma

Assume p > 2K and L is convex in its first argument. Let X* be a minimizer of
the convex relaxation. Define (H*, W*) as

(R}, h3, ... i, (W)T] = P(X*)'/?
ki=hg, forall1<i<n,1<k<K

Then (H*, W) is a minimizer of the Layer-Peeled Model

e No loss of information when we study the Layer-Peeled Model through a
convex program

e But class means no longer collapse to classifiers

e Alternatives of convex relaxation exist [BMPO8, HV19]

25/42



A numerical surprise

Average cosine of between-minority-class angles

1 T
0.8}
1 061k 1
_E —KA=3 -g —KA=3
2 fKA=57 2 04+ fKA=57
o Ka=7 o Kp=7
0.2r
ol
. -0.2
10° 10" 102 10° 10* 10° 10" 102 10° 10*
Imbalance Ratio (R) Imbalance Ratio (R)
(C)EW:1,EH=5 (d)EW:LEHZIO

@ When R < Ry for some Ry > 0, average between-minority-class angle
becomes smaller as R increases

® Once R > Ry, average between-minority-class angle becomes 0: implying

- . |
that all minority classifiers collapsel! 2642



Minority Collapse

@ When R < Ry for some Ry > 0, average between-minority-class angle
becomes smaller as R increases

® Once R > Ry, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition

Let (H*, W™) be any global minimizer of the Layer-Peeled Model. As
R=ny/np — oo, we have

limwy —wj, =0,, forall Ky <k <k <K

e The prediction on the minority classes becomes completely at random
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lllustration of Minority Collapse
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Intuition for Minority Collapse

1 K Nk
min . 2> LWhi )
k=1 =1
1 K
2
s.t. EZ”wkH < BEw
k=1
1 & 1 &
N =Nl < E
K;nk;” wil® < Eg

Competition for space!
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Is Minority Collapse a real thing?



Minority Collapse in experiments

Imbalance Ratio (R)

(g) ResNet18 on FashionMNIST

“K,3 K -
0.8[|-5-K,=5 0.8[|-5-K,=5
K= e K,=7
0.6 0.6
[} [}
< <
2 04 2 04 /
o o £/
0.2 * 0.2 /
* -
0 o — 0 =
0.2 -0.2
1 10 100 1000 +00 1 10 100 1000 +00
Imbalance Ratio (R) Imbalance Ratio (R)
(e) VGGT11 on FashionMNIST (f) VGG13 on CIFARIO
1 1
——K,=3 —+K,=3 ¥
0.87|-5-K,=5 0.87|-5-K,=5
e K,=7 / K7
0.6 0.6
[} / [}
c £ /
3 0.4 / 3 0.4 /
o (¢]
0.2 * A 0.2 B
T —
0 H — - 0 — */// _
-0.2 -0.2
1 10 100 1000 +00 1 10 100 1000 +00

Imbalance Ratio (R)

(h) ResNet18 on CIFAR1O
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LPM predictions match experiments

1 AN
0.8+
0.6+
° O wd=5e-3 (LPM)
£ -A-wd=5e-3 (DL)
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Outline

3. How to Mitigate Minority Collapse?
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Idea: make the minority stronger!



Oversample minority classes

Oversampling duplicates training example from minority classes [JKO9]
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Oversample minority classes

Oversampling duplicates training example from minority classes [JKO9]

The adjusted optimization problem:

Ka na

Z Z ‘c(f(wk,i; VVfull)) yk)
k%;z_lnB

+wr :E: :E:}C(f($kﬂ;‘mGM07yk)

k=K +1 i=1

1
naKa+ wngKp

while keeping the penalty term g”“ffu””2
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Layer-Peeled Model with oversampling
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Layer-Peeled Model with oversampling

Theorem

Assume p > 2K and L is convex in the first argument. Let X* be any minimizer

of the convex relaxation withny =ns = --- = ng, = na and
MK +1 = NK 42 = -+ = ng = wynpg. Define (H*, W*) as
(AR5, Ry, (W)T] = P(XH)!/?

ki=hi, forall1 <i<na1<k<Ka
ki=hp, forall1<i<np, Ka<k<K

Then (H*, W) is a global minimizer of the oversampling-adjusted
Layer-Peeled Model.

e The size of minority class is now in effect w,np instead of np
e |f the oversampling rate w, = n4/np = R, neural collapse is back!
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Effect of oversampling, in theory
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Can oversampling really resolve Minority Collapse?




Oversampling mitigates Minority Collapse
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Test performance

Network architecture || VGG11 I ResNet18
No. of majority classes [| Ka =3 [ Ka=5 [ Ka=7T[ Ka=3[Ka=5[Ka=7
Original (minority) 15.29 20.30 17.00 30.66 34.26 5.53
Oversampling (minority) 41.13 57.22 30.50 37.86 53.46 8.13
Improvement (minority) 25.84 36.92 13.50 7.20 19.20 2.60
Original (overall) 40.10 57.61 69.09 50.88 64.89 66.13
Oversampling (overall) 58.25 76.17 73.37 55.91 74.56 67.10
Improvement (overall) 18.15 18.56 4.28 5.03 9.67 0.97

Table: Test accuracy (%) on FashionMNIST when R = 1000. “Original (minority)” means that the test accuracy is
evaluated only on the minority classes and oversampling is not used. When oversampling is used, we report the
best test accuracy among four oversampling rates: 1, 10, 100, and 1000.
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evaluated only on the minority classes and oversampling is not used. When oversampling is used, we report the
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The best test accuracy is not achieved at w,, = 1000, indicating that
oversampling with a large w, would impair the test performance
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Remarks on oversampling

e Large value of w, can mitigate Minority Collapse on the training set
e But might degrade test accuracy
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Remarks on oversampling

Large value of w, can mitigate Minority Collapse on the training set

But might degrade test accuracy

e Remains open: how to select an oversampling rate?
Other approaches such as fixing the classifiers?
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Concluding remarks



One-line summary

It's a small but useful surrogate model

2
Tamal
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Future directions

Immediate connections:
e Go diverse: general imbalanced datasets
e Try various loss functions

e Relate Minority Collapse to fairness
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Future directions

Immediate connections:
e Go diverse: general imbalanced datasets
e Try various loss functions
e Relate Minority Collapse to fairness
More broadly:

e Multiple Layer-Peeled Model:

K

1

||W(L7m+1):L ||2 < Ew

=
=

ny
%Z niz heill® < Ep
k i=1

e Model the training dynamics and test performance
e Why does the ansatz yield reasonable prediction?

W.H NZZ hk*i’W(L—m-l-l)IL)ayk)
’ k=1 i=1



Take-home messages

Layer-Peeled Model = minimal integration of

prediction (W) + representation (H)

e Nonconvex but analytical

e Explain neural collapse

e Predict Minority Collapse

e Practical insights into deep learning

Reference

Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in
Imbalanced Training

with Cong Fang, Hangfeng He, Qi Long. Proceedings of the National Academy of
Sciences (PNAS), 2021

e Code: https://github.com/HornHehhf/LPM

e NSF CAREER and TRIPODS, and Sloan )
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